Принцип работы турбин

Для повышения мощности современных двигателей широко применяются турбины. Этот метод увеличения мощности без повышения объёма и степени сжатия называют наддувом. Сама турбина представляет собой воздушный компрессор, который увеличивает давление воздуха на входе в цилиндр, таким образом увеличивая его количество. Соответственно, увеличивают и количество подаваемого топлива.
Виды турбины наддува
По виду привода турбины бывают:
– Механическая – работает от механического привода;
– Электрические – работает от электромотора;
– Турбина, работающая на отработанных газах.
Классическая конструкция автомобильной турбины – две крыльчатки на одном валу. Первая раскручивается под действием движения выхлопных газов. Вторая, приводимая в действие первой, нагнетает воздух в цилиндр в такте впуска рабочей смеси. Принцип действия нагнетателя – использование энергии выхлопных газов для компрессии входящего воздуха.
Электрические турбины, скорее всего, более перспективны, так как не обладают многими недостатками классической конструкции. Но их применение пока ограничено конструктивными особенностями и стоимостью изготовления.
Интеркуллер
При сжатии воздуха его температура увеличивается. Кроме того, он частично нагревается за счёт нагрева самой турбины выхлопными газами. Для снижения температуры нагнетаемого воздуха применяется охлаждающий радиатор – интеркуллер. Его принцип работы прост – увеличение массы воздуха за счёт охлаждения.
Принцип работы классической турбины
Турбина с двумя крыльчатками, которая работает на отработанных газах, сегодня стала самой распространённой конструкцией наддувного двигателя.
Преимущества турбины на отработанных газах:
– Высокая эффективность за счёт использования энергии выхлопа;
– Взаимосвязь количества требуемого надува и количества выхлопных газов;
– Простота конструкции.
Основные недостатки такого типа конструкции:
– Недостаток мощности на малых оборотах;
– Избыток мощности на больших оборотах.
Существующие проблемы классической турбины с двумя крыльчатками решает механизм изменяемой геометрии. Он работает по принципу изменения рабочего пространства крыльчатки, раскручиваемой отработанными газами. В корпусе первичной крыльчатки расположены лопатки, положение которых изменяет кулачковый механизм в зависимости от оборотов двигателя. На малых оборотах весь поток направляется на лопатки крыльчатки, увеличивая скорость её вращения. На больших оборотах часть газов направляется мимо лопаток крыльчатки, снижая избыточную скорость вращения турбины. Изменяемая геометрия позволяет свести к минимуму «турбинную яму» - недостаточный прирост мощности на малых (менее 2 – 2,3 тыс. об/мин) оборотах двигателя, характерную для всех классических турбин. Кроме того, изменяемая геометрия делает турбину ещё более эффективной во всём диапазоне работы.
Обслуживание турбин
Работает турбина в довольно жёстких технических условиях. Самый сложный аспект в работе турбины связан с высокой температурой выхлопных газов и изменяющимся режимом работы. Первичная крыльчатка работает в зоне высоких температур и агрессивной среды. Вторичная (нагнетательная) крыльчатка работает в зоне сравнительно низких температур. Оба механизма работают на одном валу – это одна из главных конструктивных проблем, не позволяющая турбине работать долго без обслуживания.
Ремонт турбин, в основном, заключается в замене её внутренностей, балансировке и т.д. При значительном износе корпусных деталей требуется замена турбины на новую.